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A new numerical procedure was proposed for solving the Lado perturbation method which 
speeds up the computations several times. The procedure was tested by computing the thermo
dynamic properties of a Lennard- Jones pair-additive fluid. 

Recently, considerable advance has been reached by statistical thermodynamics 
in the description of structure and thermodynamic properties of simple flu ids . The 
latest group of simple-fluid theories are the methods based on the combination 
of the perturbation principle with the approximations used in the solution of integral 
equations. To this group pertain, e.g., the referenced hypernetted chain theory 
proposed by Lado 1

, its extension and reformulation called by Smith and Henderson, 
the corrected integral-equation 2 and the integral-equation perturbation theory 
by Madden and Fitts3

. The principle of all these theories is very similar. The Percus
- Yevick approximation4 or the hypernetted chain approximationS are used not for the 
whole computation of the system properties but only to the computation of devia
tions from the reference system. It can be expected these methods will yield very 
good results, however, they are substantially more time-consuming compared 
with the former perturbation theories. Such as the classical integral equations, they 
suffer considerably from the problems of rapid convergence of iteration procedUJe. 
Perhaps, this is just the reason why concrete results of these methods have appeared 
in the literature only sporadically. 

The aim of this papel is to propose a numerical procedure for solution of the Lado 
method which would enable to speed up the computations several times. The method 
is applied to computations of the thermodynamic properties of a Lennard-Jo~es 
pair-additive fluid. Accuracy of the Lado method is tested by comparing with the 
results of parametrizations of simulated data and by testing the consistency ()f the 
thermodynamic quantities. 
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THEORETICAL 

The fundamental principle of the Lado method is neglecting the difference of ele
mentary diagrams of the reference and investigated systems 

E(r) = Eo(r) . (1) 

Consequently it can be considered as the perturbation theory of the zeroth order 
in elementary diagrams and therefore as a theory in a sense of the HNC approxima
tion. On the basis of the diagram analysis, Eq. (1) can be rearranged into the form 

Ac(r) = Ah(r) - In [y(r)/yo(r)] , (2) 

where the difference of the direct correlation functions 

Ac(r) = c(r) - co(r) , (3) 

the difference of the total correlation functions 

Ail(r) = her) - ho(r) (4) 

and the function y(r) or yo(r) is defined by the relation 

y(r) = g(r) exp [pu(r)] . (5) 

Here p denotes the reduced reciprocal temperature p = e/kT and u(r) is the pair 
potential. From the Ornstein-Zernike integral equation expressed in terms of the 
Fourier transform6 

liCk) = c(k)/[l - ee(k)] (6) 

follows another independent relation for the difference of correlation functions: 

Mi(k) = x~(k) Ac(k)/[l - exo(k) Ae(k)] . (7) 

In preceding relations, '" denotes the Fourier transform, e is the number density 
of the system and Xo(k) = 1 + efi(k) is the structural factor of the reference system. 
Eqs (2) and (7) form then an iteration scheme for the solution of differences of the 
correlation functions. 

For the computation itself, Lado1 proposes to rewrite the iteration scheme in the 
following way: Let us define the function 

H(r) = In [y(r)/yo(r)] = Ah(r) - Ac(r) . (8) 
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The iteration scheme can then be rewritten as the pair of equations 

C(r) = goer) {exp [H(r) - fJui r)] - 1} - H(r) , 

fi(k) = C(k) {X~(k)![l - QXo(k) C(k)] - I} , 

1523 

(9) 

(10) 

where uir) is the perturbation part of the potential uir) = u(r) - uoCr). Eqs (9) 
and (10) are equivalent to relations (2) and (7), however, they are substantially numeri
cally more advantageous with regard to the smoothness of the function H(r). 

Such as in solving integral equations?, It is necessary to use a damped iteration 
with a parameter IX < 1 at higher densities. If Hn(r) is the n-th approximation of the 
solution entering Eq. (9) and fi~(k) the respective result of Eq. (10) , we can write 
for the (n + 1)st approximation 

(11) 

where H~(r) is a result of the back transform of fi~(k). 
In this way of solution, we reach convergence, however, the number of iterations 

is very high, and the consumption of computer time increases strongly with increasing 
density and decreasing temperature of the system. To attain substantial time-saving, 
we have proposed to modify the iteration scheme in the following way: 

Let us assume that we know an approximate solution of Eqs (9) and (10) which is 
denoted by HI(r). By inserting into Eq. (9), we get the function e1(r) and from it, 
in terms of Eq. (10), fi~(k) and corresponding H~(r). Unless HI(r) is directly the 
solution, 

(12) 

holds, and the difference of these two functions is a measure of the distance Ht(r) 
from the solution. An arbitrary successive approximation of solution Hn(r) can be 
written as 

(13) 

where AHn(r) is a comparatively small function. If we rewrite the iteration scheme 
in terms of deviations I1Hn(r) we have 

and 

(15) 
where 

(16) 
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and 

(17) 

The differences L'lCn(k) and L'lH~(k) are defined as 

(I8) 

and 

(19) 

Then Eq. (11) turns into the equivalent relation 

Since the deviations L'lH(1') and !l.C(1') are substantially smaller functions than the 
original H(r) and C(1'), it is possible, with a small accuracy loss, to use the Fourier 
transformation with a lower number of points for their calculations. For instance, 
if we extend twice the integration step, and reduce to one half the maximum distance 
used, the time needed for one iteration decreases approximately sixteen times. 
To reach reliable results, it is then suitable. after a number of these shortened itera
tions, to define newly the function H1(1'), carry out several iteration cycles according 
to Eq. (9) and (10), and repeat the whole process again. 

RESULTS AND DISCUSSION 

The procedure proposed was checked by extensive computations for the model 
Lennard-Jones pontential 

u(1') = 4£[(0'/1')12 - (0'/1')6] . (21) 

The representative results along with the details of numerical application can be 
found elsewhere8

. Here we present only an i llustrat ion of speed ing-up the convergence 
of iteration process and a brief comparison of the Lado method with smoothed 
simulated data on a typical liquid isochore (!* = N/V0'3 = 0·8. 

The following parameters were chosen for the computations: step in integration 
L'lr = 0·020' and limit integration rMAX = 60'. Here we proceeded invariably so that 
after 25 short iterations (14)-(20) with the parameters r = 0·040' and rMAX = 30', 
two long iterations (9) - (11) were always inserted. The damping factor was chosen 
as Or: = 0·1. To speed up the computations, Or: = 0·5 was set in each fifth iteration. 
With regard to the iteration character of computations, the Fourier transform was 
carried out by a numerical method9 ensuring the fulfilment of condition of rever-
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sibility 

J(r) = }(k) = f(r) (22) 

with the inaccuracies given by finite precision of computer only. As the initial guess, 
the solution of exponential approximation was used which is obta ined from Eqs (9) 
and (10) setting 

g(r) = go(,.) . (23) 

The convergences of the original and mod ifk d proced ures are compared in Table I. 
The number of iterations is chosen always so that the time consumed by both the 
procedures is approximately the same. For illustrati on, we give also the va lues of the 
compressibility factor from virial equation 

z = 1 - (2rr/3) (2[3 -- - g(,.) r3 dr, fOO du(r) 

o dr 
(24) 

the configurational energy, U, obtained from the energy equa tion 

(25) 

TABLE I 

Convergence of the Lado methodO 

Original procedure Modified procedure 

Number of mean number of mean - F/NkT - U/kT 
iterations deviatic nb iterations deviati onb 

--.--- ----.. ------ - --

0 11·45 0 11-45 0 '654 2·043 3·573 
5·27 25 0·349 0 '673 2·041 3·554 
2·71 50 0·070 0'682 2·040 3·555 
1·25 75 0·025 0·685 2'036 3·556 

12 0·56 100 0·009 0 '687 2'035 3·556 
15 0·52 125 0·003 0'687 2·035 3·556 
18 0·62 150 0·00 1 0 '678 2·035 3·556 
21 0·61 175 0·000 0·678 2·035 3·556 
24 0·56 200 0·000 0·678 2·035 3·556 

a Reduced density No- 3
/ V = 0'5, reduced temperature P = I; b mean quadratic deviation of the 

following estimations of function y(r) in per cent. 
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and the Helmholtz energy for which follows the relation from the Lado theory: 

FjNkT = Fo /NkT - 2rrQ f~{Llh2(r)J2 + Llh(r) -

- g(r) In [g(r) /goCr)] - g(r) /3uir)} r2 dr + 1/C4rr2Q) . 

. f~{Q Llh(k)/Xo(k) - In [1 + Q Llh(k)/Xo(k)]} e dk. (26) 

The chosen density and temperature correspond to saturated liquid , where the con
vergence of the Lado method is especially slow. It can be seen that the procedure 
proposed by us converges substantially more rapidly than the original one. 

To test correctness of theory, one can use a comparison with pseudoexperimental 
Monte Carlo data and a test of consistency of thermodynamic quantities. The values 
of the compressibility factor on the isochore Q = 0·8 are compared in Table II. To 
obtain them, we used vi rial equation (24), equation for the Helmholtz energy (26) 
along with the relation 

z = 1 + Q (8F/NkT) 
8Q ,P 

(27) 

TABLE II 

Values of the compressibility factor on the isochore Q* = 0·8 
-------~ 

Densities 
Me data Lado theory 

zMC 
Zv zF Zu 

0·1 3·50 3·67 3·54 
0·2 3~70 3·95 3·78 3·78 
0·3 3·67 3·91 3·74 3·78 
0·4 3·54 3·78 3·55 3·64 
0·5 3·33 3·49 3·26 3·40 
0·6 3·03 3·20 2·93 3·11 

0·7 2·64 2·88 2·54 2·75 
0·8 2·19 2·36 2·12 2·36 
0·9 1·7\ \ ~95 1·73 1·94 
1·0 \ ·24 \·52 1·24 1·48 
1·1 0·74 \·00 0·72 1·01 
\·2 0·22 0·56 0·21 0·52 
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and energy equation (25) from which the compressibility factor can be obtained 
by integration 

F/NkT = Fo/NkT + fP U/NkT dfJ 
Po fJ 

(28) 

and by following application of Eq. (27). Subscript of denotes here a reference tem
perature level. In this work, Po = 0·2 was chosen, where the Lado method gives 
very good results. The table gives as well the values of the compressibility factor 
obtained from the parametrization of simulated data. For low temperatures, P > 1, 
the McDonald-Singer equation lO and for the other temperatures, the Sys equation 1

! 

were used. 

At high temperatures we can observe very good consistency. The values of the 
compressibility factor obtained by differentiating the Helmholtz energy (ZF) and 
those obtained in terms of the energy equation (zu) are here nearly identical. We as
sume that ZF is here even more accurate than the parametrized data (ZMc)' 

On the contrary, the values of Zu and pressure equation (zv) are in very good 
agreement at low temperatures. However, the mutual consistency is not a sufficient 
condition of correctness as it is evident on comparing with the parametrized data. 
The best values are namely again yielded by ZF' 
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